Everywhere Continuous Nondifferentiable Function

Weierstrass had drawn attention to the fact that there exist functions which are continuous for every value of x but do not possess a derivative for any value. We now consider the celebrated function given by Weierstrass to show this fact. It will be shown that if

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} b^{n} \cos \left(a^{n} \pi x\right) \ldots(1) \\
& =\cos \pi x+b \cos a \pi x+b^{2} \cos a^{2} \pi x+\ldots
\end{aligned}
$$

where a is an odd positive integer, $0<b<1$ and $a b>1+\frac{3}{2} \pi$, then the function f is continuous $\forall x$ but not finitely derivable for any value of x.
G.H. Hardy improved this result to allow $a b \geq 1$.

We have $\left|b^{n} \cos \left(a^{n} \pi x\right)\right| \leq b^{n}$ and $\sum b^{n}$ is convergent. Thus, by Wierstrass's M Test for uniform Convergence the series (1), is uniformly convergent in every interval. Hence f is continuous $\forall x$.

Again, we have

$$
\begin{align*}
& \frac{f(x+h)-f(x)}{h} \\
& =\sum_{n=0}^{\infty} b^{n} \frac{\cos \left[a^{n} \pi(x+h)\right]-\cos a^{n} \pi x}{h} \tag{2}
\end{align*}
$$

Let, now, m be any positive integer. Also let S_{m} denote the sum of the m terms and R_{m}, the remainder after m terms, of the series (2), so that
$\sum_{n=0}^{\infty} b^{n} \frac{\cos \left[a^{n} \pi(x+h)\right]-\cos a^{n} \pi x}{h}=S_{m}+R_{m}$

By Lagrange's mean value theorem, we have

$$
\begin{aligned}
& \frac{\left|\cos \left[a^{n} \pi(x+h)\right]-\cos a^{n} \pi x\right|}{|h|} \\
& =\left|a^{n} \pi h \sin a^{n} \pi(x+\theta h)\right| \leq a^{n} \pi|h| \\
& \left|S_{m}\right| \leq \sum_{n=0}^{m-1} b^{n} a^{n} \pi=\pi \frac{a^{m} b^{m}-1}{a b-1}<\pi \frac{a^{m} b^{m}}{a b-1}
\end{aligned}
$$

We shall now consider R_{m}.
So far we have taken h as an arbitrary but we shall now choose it as follows:

We write $a^{m} x=\alpha_{m}+\xi_{m}$, where α_{m} is the integer nearest to $a^{m} x$ and $-1 / 2 \leq \xi_{m}<1 / 2$.
Therefore $a^{m}(x+h)=\alpha_{m}+\xi_{m}+h a^{m}$. We choose, h, so that
$\xi_{m}+h a^{m}=1$
i.e., $h=\frac{1-\xi_{m}}{a^{m}}$ which $\rightarrow 0$ as $m \rightarrow \infty$ for $0<h \leq \frac{3}{2 a^{m}} \cdots$

Now,

$$
\begin{gathered}
a^{n} \pi(x+h)=a^{n-m} a^{m}(x+h) \\
=a^{n-m} \pi\left[\left(\alpha_{m}+\xi_{m}\right)+\left(1-\xi_{m}\right)\right]=a^{n-m} \pi\left(\alpha_{m}+1\right)
\end{gathered}
$$

Thus
$\cos \left[a^{n} \pi(x+h)\right]=\cos \left[a^{n-m}\left(\alpha_{m}-1\right) \pi\right]=(-1)^{\alpha_{m+1}}$.
$\cos \left(a^{n} \pi x\right)=\cos \left[a^{n-m}\left(a^{m} \pi x\right)\right]$
$=\cos \left[a^{n-m}\left(\alpha_{m}+\xi_{m}\right) \pi\right]$
$=\cos a^{n-m} \alpha_{m} \pi \cos a^{n-m} \xi_{m} \pi-\sin a^{n-m} \alpha_{m} \pi \sin a^{n-m} \xi_{m} \pi$
$=(-1)^{\alpha_{m}} \cos a^{n-m} \xi_{m} \pi$
for a is an odd integer and α_{m} is an integer.

Therefore,

$$
\begin{equation*}
R_{m}=\frac{(-1)^{\alpha_{m}}+1}{h} \sum_{n=m}^{\infty} b^{n}\left[2+\cos \left(a^{n-m} \xi_{m} \pi\right] \ldots\right. \tag{4}
\end{equation*}
$$

Now each term of series in (4) is greater than or equal to 0 and, in particular, the first term is positive, $\left|R_{m}\right|>\frac{b^{m}}{|h|}>\frac{2 a^{m} b^{m}}{3} \ldots$.

Thus

$$
\left|\frac{f(x+h)-f(x)}{h}\right|=\left|R_{m}+S_{m}\right| \geq\left|R_{m}\right|-\left|S_{m}\right|>\left(\frac{2}{3}-\frac{\pi}{a b-1}\right) a^{m} b^{m}
$$

As $a b>1+\frac{3}{2} \pi$
therefore $\left(\frac{3}{2}-\frac{\pi}{a b-1}\right)$ is positive.
Thus we see that when $m \rightarrow \infty$ so that $h \rightarrow 0$, the expression $\frac{f(x+h)-f(x)}{h}$ takes arbitrary large values. Hence, $f^{\prime}(x)$ does not exist or is at least not finite.

