Statistical Physics: Ensembles

Ensembles

As a system is defined by the collection of a large number of particles, so the "ensembles" can be defined as a collection of a number macroscopically identical but essentially independent **systems**. Here the term *macroscopically identical* means, as, each of the systems constituting an ensemble satisfies the same macroscopic conditions, like *Volume, Energy, Pressure, Temperature and Total number of particles etc.* Here again, the term *essentially independent* means the system (in the ensemble) being mutually non-interacting to others, i.e., the systems differ in microscopic conditions like *parity, symmetry, quantum states etc.*

There are three types of ensembles:

- 1. Micro-canonical Ensemble
- 2. Canonical Ensemble
- 3. Grand Canonical Ensemble

Micro-canonical Ensemble

It is the collection of a large number of essentially independent systems having the **same energy E**, **volume V** and **total number of particles N**.

The systems of a micro-canonical ensemble are separated by rigid impermeable and insulated walls, such that the values of **E**, **V** & **N** are not affected by the mutual pressure of other systems.

This ensemble is as shown in the figure below.

Here all the borders are impermeable and insulated.

System 1	System 2	System 3	System 4	System 5
Energy E				
Volume V				
Number of				
Particles N				
System 6	System 7	System 8	System 9	System 10
Energy E				
Volume V				
Number of				
Particles N				
System 11	System 12	System 13	System 14	System 15
Energy E				
Volume V				
Number of				
Particles N				
System 16	System 17	System 18	System 19	System 20
Energy E				
Volume V				
Number of				
Particles N				
System 21	System 22	System 23	System 24	System 25
Energy E				
Volume V				
Number of				
Particles N				
System 26	System 27	System 28	System 29	System 30
Energy E				
Volume V				
Number of				
Particles N				

All the walls here are rigid, impermeable and insulated.

Canonical Ensemble

It's the collection of a large number of essentially independent systems having the same **temperature T, volume V** and **the number of particles N**.

The equality of temperature of all the systems can be achieved by bringing all the systems in thermal contact. Hence, in this ensemble the systems are separated by rigid impermeable but **conducting** walls, the outer walls of the ensemble are perfectly insulated and impermeable though.

This ensemble is as shown in the figure:

System 1	System 2	System 3	System 4	System 5
Temp. T				
Volume V				
Number of				
Particles N				
System 6	System 7	System 8	System 9	System 10
Temp. T				
Volume V				
Number of				
Particles N				
System 11	System 12	System 13	System 14	System 15
Temp. T				
Volume V				
Number of				
Particles N				
System 16	System 17	System 18	System 19	System 20
Temp. T				
Volume V				
Number of				
Particles N				
System 21	System 22	System 23	System 24	System 25
Temp. T				
Volume V				
Number of				
Particles N				
System 26	System 27	System 28	System 29	System 30
Temp. T				
Volume V				
Number of				
Particles N				

Outer walls here are rigid, impermeable and insulated.

Inner walls are rigid, impermeable but conducting. Here, the borders in bold shade are both insulated and impermeable while the borders in light shade are conducting and impermeable.

Grand Canonical Ensemble

It is the collection of a large number of essentially independent systems having the same **temperature T, volume V & chemical potential μ.**

The systems of a grand canonical ensemble are separated by rigid permeable and conducting walls. This ensemble is as shown in the figure:

System 1	System 2	System 3	System 4	System 5
Temp. T				
Volume V				
Chemical	Chemical	Chemical	Chemical	Chemical
Potential µ				
System 6	System 7	System 8	System 9	System 10
Temp. T				
Volume V				
Chemical	Chemical	Chemical	Chemical	Chemical
Potential µ				
System 11	System 12	System 13	System 14	System 15
Temp. T				
Volume V				
Chemical	Chemical	Chemical	Chemical	Chemical
Potential µ				
System 16	System 17	System 18	System 19	System 20
Temp. T				
Volume V				
Chemical	Chemical	Chemical	Chemical	Chemical
Potential µ				
System 21	System 22	System 23	System 24	System 25
Temp. T				
Volume V				
Chemical	Chemical	Chemical	Chemical	Chemical
Potential µ				
System 26	System 27	System 28	System 29	System 30
Temp. T				
Volume V				
Chemical	Chemical	Chemical	Chemical	Chemical
Potential µ				

Outer walls here are rigid, impermeable and insulated.

Inner walls are rigid, permeable and conducting.

Here inner borders are rigid, permeable and conducting while outer borders are impermeable as well as insulated. As the inner separating walls are conducting and permeable, the exchange of heat energy as well as that of particles between the system takes place, in such a way that all the systems achieve the same common temperature **T** and chemical potential **µ**.

Ensemble Average

Every statistical quantity has not an exact but an approximate value. The average of a statistical quantity during motion is equal to its ensemble average.

If R(x) be a statistical quantity along x-axis and N(x) be the number of phase points in phase space, then **the ensemble average** the statistical quantity R is defined as,

$$ar{R}:=rac{\int_{-\infty}^{\infty}R(x)N(x)\mathrm{d}x}{\int_{-\infty}^{\infty}N(x)\mathrm{d}x}$$